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Abstract

Feedback structures which reduce the parameter sensitivity of
a linear system are derived from the solution of the classical
linear regulator problem. Linear, time varying systems with several
inputs and outputs are treated, and simplifications in the design
are noted for the time invariant case.

Throughout the discussion, problems of implementation are
considered as constraints on the design of the system. Specifically,
unbounded elements in the controller are now allowable as the
solution to the sensitivity problem. It is shown that for the
structure, herein called Nth order feedback, the sensitivity of

the system may be reduced to an arbitrarily small value.
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1. INTRODUCTION

In the design of automatic control systems, the sensitivity of
the control system to the variation of its parameters is an important
consideration. 1In fact, one of the primary reasons for the introduction
of feedback into a system is the ability of feedback to diminish the
influence of parameter variations on the properties of the system.

Before design techniques could be developed, analysis of the
sensitivity problem had to be made. The basic concepts in this area
were first formulated by Bode [4]. His definition of system sensitivity
to parameter variations is very useful for single input, single output,
time invariant systems. However, his definition of system sensitivity
was not easily generalized to systems with several inputs or outputs.
To satisfy the need for a generalization, Cruz and Perkins [5,6,7,8]
defined a new sensitivity matrix which compared the output errors of
two system structures. In their case the two structures were the open
loop system and the closed loop system with each structure restricted
to realize the nominal transfer characteristics of the system in the
absence of parameter variations. Perkins and Cruz [ 12] also showed
that for single input, time invariant systems the conditions for
feedback to reduce the sensitivity of the system to parameter
variations imply that the feedback must be an optimal control law.
The control is optimal in the sense that a performance index, quadratic
in the state variables and the input to the system, is minimized for

all initial states.,
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If the converse of the above implication were true, a design
technique could be based on solving the optimal control problem which
is known as the linear regulator problem. Recently, Anderson [1,2] has
shown that optimally derived controllers reduce the sensitivity of the
system to parameter variations for a particular weighting of the
output errors. However, this weighting of the output errors is not
selected beforehand, but is a consequence of the optimization. Since
the above publications indicate a relationship between sensitivity
reduction and optimal control, this present work is devoted to
establishing a closer tie between the two notions.

Controllers derived from the solution of the linear regulator
problex are presented as a design procedure. It is shown that these
controllers reduce the sensitivity of the system to parameter variations.
As far as possible, ease of implementation is carried through the design
as an implicit constraint. Chapter 2 1is devoted to the mathematical
description of the system considered and to the derivation of the
feedback structures. Chapter 3 gives the main results of this
presentation. The comparative sensitivities of the structures derived
in the second chapter are given explicitly. For the restriction to
time invariant systems, simplifications are indicated. 1In Chapter 4,
large variations in parameters are considered in a slightly modified
form and the controller is shown to reduce the sensitivity of the system.
Throughout this work, examples are presented purely as illustrations

of the techniques of design for sensitivity reduction, because the
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introduction of other design considerations obscures the results
emphasized in this work. Also, since the feedback structure of the
system realizes the nominal characteristics of the open loop system
in the absence of parameter variations, other design requirements can
be satisfied in the same manner as they would be for the open loop

system.



2. DERIVATION OF THE CONTROLLERS

2.1 Description of the Plant

The plant to be considered is shown in block diagram form in

Figure 1. It is described by the following set of linear differential

equations:
x(t) = A(D)x(t) + B()u(t), x(t)) =0 (2.1)
3(6) = c(O)x(L), (2.2)
where
(-) =d/dt

The rx1l dimensional vector u is called the input to the plant. The
pxl dimensional vector y is the output of the plant, and mxl dimensional
vector x is the state of the plant. The time varying matrices A, B,
and C are of appropriate dimensions.
Equations (2.1) and (2.2) define a linear differential operator
09. It is assumed that the plant is completely controllable and
completely observable [ 10]. A test for complete controllability is
that W(to,t) is positive definite for some finite t > ty > where
t
T T
Wit ,t) =] @(t ,T)B(T)B (T)& (t,,T)dr (2.3)
0 0 0
t
0
@(to,t) is the state transition matrix, and superscript T denotes

transpose. Similarly, by the duality theorem of Kalman, an analogous

test can be made for complete observability.



Figure 1.
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The nominal plant.




The operator Cf7 is called the nominal plant. Since variations

occur in the elements of the matrices A, B, and C; a different operator

! /
69 is defined by the plant equations (2.1) and (2.2). The operator d:D

is called the varied plant. The open loop system is called where

0’

p,- ¢ 0.0

For each input u and system configuration the following definitions are

used:

1)

2)

3)

4)

5)

A superscript ' denotes a varied quantity such as the

varied output z{ and the varied state 5{.

The

subscript i denotes the system configuration such as

sz. Other system configurations to be defined later

are

The

by

The

The

for

designated F, FZ’ etc.

error signal e in the output of Gji is defined

e, = z{ b (2.5)

- ! _
_Z.i - Ei .}_{i : (2.6)

sensitivity of a system 691 is measured by

(-]
T
h, =[] eWe, dr, W20, (2.7)
t

each 69’ and u such that Ai exists.




Since feedback systems introduce a dependence of the plant input on
the plant output, feedback systems can be designed which are 1less
sensitive than the equivalent open loop system. However, Porter [ 13]
shows that not all variations can be compensated for by varying the
input. Therefore, it is assumed that the varied plant is output
equivalent to the nominal plant.

t
Definition: ’9 is output equivalent to JCD if and only if for

each u ¢ U (input space) there exists u' ¢ U such that

Pla = Pu . (2.8)

OQutput equivalence, it should be noted, is similar to the complete
compatibility of adaptive controllers [3] in that either notion guarantees
that the system performance can be maintained. The difference is that no
structure is specified for the generation of the varied input in the
former case.

With this restriction on the variations, the open loop output

error can be written
= p'g - P&= (PI(E'E') = Flégo- (2.9)

If the variations are small enough so that the approximation

e
=0

E'O:‘ P'ég (2.10)
can be made,

e = Cz (2.11a)
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and

et) =0 . (2.11c)

Hence, the output error can be considered as a consequence of an error
in the input to the nominal plant.

Finally, it is assumed that the nominal plant is uniformly
asymptotically stable. This assumption is not restrictive. 1In fact, if
the nominal plant is unstable and the open loop system is tested for
sensitivity, the error signal becomes unbounded even for small variations
in the plant parameters. This unbounded error signal occurs because
unstable modes are excited whenever the plant varies from its nominal
value. This result is not new since it has always been considered '"bad
practice" to cancel instabilities with an open loop input. For time
invariant systems this procedure would amount to cancellation of poles
in the right half of the complex frequency plane with zeros in the

right half plane.

2.2 The Linear Regulator Problem

The linear regulator problem is well known [ 9,11] and is presented
here for completeness because it is the basis for the design techniques
presented later.

The plant is the same as given by Equations (2.1) and (2.2)
except that §(t0) # 0. The problem is to select a control of the form

4 = k(x,t), ke Ch (2.12)
u =k



which minimizes

t
1 T T
J= lim [ yWy+u, Ru dt
t, - ®
1 to
where W> 0, R> 0 for all t z_to. The solution is given by
v, = - Fx,
where
P + PBR BT - ATP - PA = cTwc ,
P(tl) =0, P>0,
lim =P ,
tl"'eo
and
F=r 1877 .

Since the plant is completely controllable, P exists for all t >ty

(proposition (6.6), [9]), and the system

x=(A-BF)x, x(t;) #£0

is asymptotically stable. Complete observability insures that the
control can be generated from measurements of the output y.

with @ the operator defined by the state transition matrix, the

equation

F@B-= 7¥ C¢ B.

can be solved for the operator zf

(2.

(2.

(2.

(2.

(2.

(2.

(2

That 1is,

(2.

13)

14)

15a)

15b)

15¢)

15d)

.16)

17)
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Example 1: Given the plant described by

Yy+y+y

=u,
the state equations are
. 0 1 0
X = X+ u
-1 -1 1
y=[1 0] x.
Let
T2, 2
J= [ 3y"+u" dt
0
so that
F=[1 .732]

Thus the operator 2‘ has the transform

H(s) = (1 + .732s)

2.3 Closed Loop Controllers

The operator TZ/ is now used to form a set of feedback structures.
The first member of this set is constructed in Figure 2, where the
prefilter A&/ realizes the transfer properties of the nominal plant.

By a simple calculation,

j=I+F¢B (2.18)
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Figure 2. The first order feedback structure.




The operator 4&7 is described in state form by

v-d

where

S

1}
>
1]
+
v~
|g
jn
~~~
o
N
"
lo

b

v=Fs +w.

12

(2.19a)

(2.19b)

(2.19¢0)

The structure in Figure 2 is called the first order feedback system and

is represented by GC? . The additional members of the set of feedback

1

structures are formed by a simple algorithm. The Nth member of this set

is called the Nth order feedback system and is denoted 6:>.

n

algorithm is depicted in Figure 3 and is
1) With the system 4’2_1 given, connect the feedback
loop W .
2) 1Insert the prefilter 48/ , and

3) Define the resultant operator as pi'

Example 2: From Example 1,

F=[1 .732]

so ‘éﬁ/ has transform

52 + 1.732s + 2

s2 + s + 1

G(s) =

The second order feedback system is shown in Figure 4.



——— T L. L T O Y T W Uy e W e ey "

A

Figure 3. The formation of Pi from p
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s2+17325+2

g2+g+)

Figure 4.

s?+17325+2
sé+g+]

1

Y(s)

S2+g+]

1+.7325

The second order feedback structure

of Example 2.

FR-1306
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3. SENSITIVITY ANALYSIS

3.1 Introduction

The elements of the set of structures
L P, 001, JQZ,...} (3.1)

defined in Section 2.3 and Equation (2.4) satisfy
Fi_:W for i = 0,1,2,... (3.2)

when &91== /9 . However, if the plant deviates from its nominal value

%9 s JQQ defines a different operator for each i = 0,1,2,.... It is
this difference which is important and which is exploited by the design
to reduce the sensitivity of the system to variations in the plant.

As previously defined in Equation (2.7), the sensitivity of the
system is measured by A. With A as the measure of system performance,
the notion of comparative sensitivity is used for the selection of
the controller parameters. In general, the requirement for an adequate

design is
/
A< a AO for all J? (3.3)

with 0 < 0 < 1, where ¢ is a constant selected to satisfy the tolerances
placed on the system output. In the next section the actual design of
a system which satisfies Equation (3.3) is presented with the basis

for the design on the solution of the linear regulator problem.



3,2 Time Varying Plants

Up to this point in the discussion, the selection of the matrices
W and R has not been specified beyond that given in Equation (2.6).
Now, W is chosen to correspond to the weighting of the output errors
used in the measure of system performance, Equation (2.7). The choice
is a natural one, but unfortunately, only justifiable by the results it
produces. The selection of the matrix R is deferred until analysis of
the design is given.

Lemma 1: For small variations in the plant parameters,

AO+U0-A1-U1=AO, (3.4)
where

v = 6ul Rou at (3.5)

0 =J Yo Y9 ’ :

to

and

e T

Uy =[ ®uy - Fz))" RGuy - Fz)dt . (3.6)
t
0

Proof: The calculation of AO and Al follows from Equations (2.7),

(2.11) and (2.15).

For AO,
T T T T
Eo Wgo = - Eo PEO + EO F RFz
3.7)
T T T
- zc A PEO - z0 PAz

16
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or
T T : T T _.
S0 oo T T Zy Pzy -z Pzy - zp Pz
T T T _T T
+EO F RFz +EO FR69_0+5u0 RF_z_O (3.8)

[+~] =<}
T T
I € WEO dt —‘r (620 + FEO) R(égo + FEO)
%o o (3.9)
T T ®
-630 RbEOdt-EO Pz, lto
The last term vanishes since P exists and
lim Eo(t) =0 (3.10)
t - o
from the existence of Ao.
For Al’
T _ T T T T T
e ng -z P51 -z A P_z_1 z; PAz1 + z; F RF_z_1 (3.11)
or
T _ T ST T T
& Ney = -z Pzy -z Pzy -z Pzy - z,7 FRFz
T T _T T
+ 620 RF_z_1 + 2z F Régo - éuo R6L10 (3.12)
T
+ 630 Régo .

Integration of Equation (3.12) for all time yields
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© -]
T _ T T
Joe, We, dt = [ Suy Rbuy - (uy - Fz))” R@u, - Fz))dt
o o 3.13
[+ -]
-z T Pz ‘ o
1 =1 t0

Again the last term vanishes since

lim zl(t) =0 . (3.14)

t —»
Subtraction of (3.13) from (3.9) and rearrangement of the terms yields
3.4).

Theorem 1: For small variations in the parameters of the plant,

lim A =0 . (3.15)

n
n-—®

Proof: Lemma 1 generalizes by induction and the repetition of the

proof for Lemma 1 with égi in place of égi-l' Then,

Al + U - A2 -u, = Al (3.16)

A2 +U, - A3 - Uy = A2 (3.17)
and in general

Ai-l + Ui-l - Ai - Ui = Ai-l (3.18)
Summation of Ai from i = 0 to i = n gives the relationship

n

iEo Ai = AO + U0 - An - Un . (3.19)

The sequence of partial sums defined by Equation (3.19) is monotone

increasing since A, is positive for all i. This sequence is also bounded
i
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from above by AO + UO' Hence, the sequence converges and (3.15) follows.
Theorem 1 means that the error can be reduced to an arbitrarily small
value at the cost of increasing the number of sections in the feedback
structure. Then the rate of decrease for each step and the uniformity
of the rate of decrease become important.

From Equation (3.18), the rate of decrease is a function of the
weighting matrix R, albeit a very complicated function. However, for
the general time varying plant the assertion can be made that a
sufficiently smaller norm of R increases the rate of convergence. This
statement follows from Theorem 2.

Theorem 2: With the replacement of R by AR, A > 0, in the design

of the controller as given in Sections 2.2 and 2.3,

lim Al(X) =0 . (3.20)
A0

Proof: From Equatioﬁ'(3.13),

-~}
T
ALY =\ [ by, ROuy = AU, . (3.21)

%o
Since UO exists and is independent of A, (3.20) is proved. The
interpretation of Theorem 2 is that R should be selected as small as
possible in order to achieve the greatest decrease in the sensitivity
per order of feedback structure. However, smaller R matrices generally
yield feedback operators with larger parameter values. Hence, the

choice of R is restricted by the value of feedback which can be

implemented.



On an intuitive basis, Theorem 1 and Theorem 2 are similar results.

The property of feedback which allows the possibility of sensitivity
reduction derives from the manner in which the input to the plant is
formed. For the nominal plant, the difference between the feedback
signal and the output of the prefilter is the nominal input. When
variations in the plant occur, the input to the plant will change to
compensate for thse variations if the system is designed properly.
Hence, the change in the input relies on the output actually deviating
from its nominal value. Since this deviation is to be kept small, the
controller must be able to detect small variations and to produce
large changes at the input.

To circumvent the need for large gains in the system, the higher
order feedback structures are introduced in this work. Theorem 1
verifies that the desired reduction in sensitivity is possible. The
power to reduce the sensitivity of the plant results from the manner
in which the input to the plant is formed by the system. Instead of
forming the input as the difference of two large signals, the higher
order feedback systems perform the repeated differences of many
manageable signals. Then, if variations occur, the change in the input
is the result of the sum of many small signals. In this way, the
undesirable use of very large gains in the controller is eliminated.
The latter method is not without limitations, however. Inspection of
the high order feedback structures reveals that the feedback loop

must have the power to supply the feedback signal to many summation

20
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points. Hence, the magnitude restriction is replaced by a power
requirement.

It should not be assumed that the algorithm given for forming
the higher order feedback structures is necessarily the actual method
of construction. Many other realizations are possible but since any
particular choice of construction relies on factors in the design not

considered here, this question is left for future study.

3.3 Time Invariant Plants

Since time invariant systems can be analyzed as finite dimensional
linear operators in the frequency domain, improvements in the design
are possible. Application of Parseval's theorem to Equation (3.9)

and Equation (3.13) yields

[ ]

* * . -1% -1,
b, - by = [ 80Uy Gw) {K (JO)RR(jw) + K™ (JW)RK ~(jw) - 2R}
- (3.22)
égo(jw)dm
where
K@Gw) =1 + Féf(jw)B , (3.23)
éoo(jw) - Ljwz-a)"t, (3.24)

and superscript * denotes conjugate transpose. Now frequency domain
conditions on the R matrix can be formulated. Since each increase in
the order of the feedback structure necessitates a greater amount of

implementation, the choice of R should guarantee that each feedback



structure is better than the one before. Better in the sense that

22

/
> F
Aj > Aj+1 for all (3.25)
for j = 1,2,3,....
Lemma 2: A, > A, for all 8U, if and only if
- = i =J
* -1% -1
‘ KRK+K "RK " - 2R> 0 for all real w . (3.26)
|
‘ Proof: See [7].
|
| Equation (3.26) can be stated in a more convenient form. Since
R> 0, R has a unique square root defined by
2
R=24Q (3.27)
and
Q>0 . (3.28)
Premultiplication and postmultiplication of Equation (3.26) by Q-1
i yields the equivalent necessary and sufficient condition of Lemma 2
1%, I-l* |'1
K''K' + K K -2I> 0 for all real w , (3.29)
where
. -1
K' = QKQ ~ . (3.30)
Theorem 3: If K' is a normal operator for all real w, Equation
(3.29) is satisfied.
Proof: K' normal implies, by definition,
* *
K' KXK' =K'K' =D> 0. (3.31)
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Then, Equation (3.29) becomes
pt {D-I}2 (3.32)

which is positive semidefinite since D-1 is positive definite, (D-I)2
. ‘s , .. -1 2
is positive semidefinite, and D 7, (D-I)" commute.

For single input systems K' is always normal since K' is a
scalar. The next example shows that systems exist for which R can be

chosen to satisfy Theorem 3.

Example 3: Given

[~ ]
W= 0 ,
0 1
A = {?1 0 ,
0o -2
and r_ —_
B = 2 1
1 1
Choose __ —
R = 5 3
3 2
then _ —
2 1
Q =
1 1_]
and
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Finally

s2+(2+\f—2-)s+2\f2— 0
0 s2 + (1 + J?S s + VE;

K' =
s2 + 3s + 2

which is a normal operator for s = jw, w real.
With this example as a basis the design for the performance

criterion

N
g
Hh
o
]
e

IA
o))

b <

is produced. For the values given above, it can be verified from the
e - . . th
sensitivity criterion of Cruz and Perkins that the n~  order feedback
systems meet the requirement for the ranges shown in Table 1. Hence,
in order to satisfy the criterion for system performance, n must be
chosen greater than or equal to eight.
The order of the feedback structure may be decreased by increasing
the gains of the feedback elements. For this case, choose a new

weighting of the input

then

N
—

and



The performance criterion is met for the ranges of w, W real,
shown in Table 2. Thus, for this choice of weighting of the inputs,

the order of the feedback system can be reduced to four.

25



Table 1

Order of feedback Range of w for
system which A < L A
n - 270
1 none
2 none
3 none
4 uF < 1.29
5 w? < 2.70
6 w? < 4.12
7 uF < 5.70
8 w2 < 6,93
9 w2 < 8.50
10 wzs 9.90



Order of feedback
system
n

10

Table 2

Range of w for

which A <

e
IA

e € 1= € e e
A IA IAN IA TN A

€
IA

none

IA

w

(o)}

O

2

L

.83

.69

.60

.40

12.

15.

18.

21

23.

0

27



4. LARGE VARIATIONS IN TIME INVARIANT SYSTEMS

In the preceding section, the variations in the parameters were

assumed to be small so that the approximation
!
fég 0062 (4.1)

could be made for all du. For the discussion of large variations a

n

different approach is taken in this section. The type of variation is

still assumed to leave the varied plant output equivalent to the

nominal plant, which by definition implies the existence of the input
1

u', where u' is the input to the varied plant which yields the nominal

output. Therefore, the input to the open loop system is in error by

duy =u’ - u (4.2)

Similarly, the inputs to the feedback structures are in error by
éul, 6u2, etc, It is not surprising that these errors are related.

The relation between du, and du, is now derived. Since

—0 1
|
P +w-yx (4.3)
and
¢
Y wreu) -Hyp-y. 4.4)
630+9_=ﬂ(g+631) -79’ Y (4.5)
But

»8=I+F¢B (2.8)

7VIC¢B=F¢B 2.7
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and

y = C @ Bu (nominal system) (4.6)
so that

bu, = by, 4.7)
For time invariant systems, 437 has transform

G(s) =1+ F§€(S)B = K(s) (4.8)
and Equation (4.,7) has transform

620(5) = K(s)égl(s) (4.9)
Now F is optimal for regulator problem which implies

*
K RK> R for all real w . (4.10)

Hence,

* *
8V, ROU, > 86U, RSV, (4.11)

for all real w. Equation (4.11) shows that the input U, which is fixed,
is closer to the correct control U' for the first order feedback system
than for the open loop system. Similarly, it can be shown for higher

order feedback structures that U approaches the correct input; that is,

5U. RS 5U. RS 4.12)
Uj.q By > 00 BTy (4.

for all real w and i > 1. 1In fact, this error goes to zero for very

large order feedback structures,

*
lim BUn RbUn =0 for all real w . (4.13)

n-—®



To prove Equation (4.13), define the monotonic sequence

1% - 2% o -n% -
R> KRk > kP ReE > L > kM RD (4

which is bounded from below by the zero matrix. Hence,

. -n¥__-n .
lim XK = RK = exists for all w , (4.
n - e
and
lim K " exists for all w . (4.
n -
For any 6U0 with finite norm,
. -n .
lim K 6U0 = lim 8U_ = a 4.

for some a, and

Ka =K lim K~ 8Uj= lim K (n-1) 85U,
noe noe (4.
- 1
= lim K™ 8U,=a .
1 0 -
n' -«
But K =T + F%PB, so that

F%PBQ =0 (4.

Now, the pair [A,B] is by assumption completely controllable and the
pair [F,A] is by optimality completely observable. Hence, by [ 14]

Lemma 6

F%OB is nonsingular (4.

so that

30

.14)

15)

16)

17)

18)

19)

20)

.21)



and Equation (4.12) follows.
Thus, even if the variations are large the higher order feedback
structures are capable of sensitivity reduction if the varied system

remains stable.

31
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5. CONCLUSIONS

5.1 General

It has been shown that optimally derived controllers yield systems
which can be made arbitrarily insensitive to parameter variations.
Theorem 1 shows that the sensitivity of a linear plant approaches zero
with very high order feedback structures. Theorem 2 states that the
same goal is achieved with an increase in the gains associated with the
feedback structure. However, in any practical situation the gains must
of course remain bounded. For any specified problem, therefore, there
exists a trade-off between the number of stages which must be implemented
and the gains which must be met in the implementation of any one stage.
Hence, it is suggested that the relationships given here be used as
guidelines, tempered by other design considerations such as realizability
as a passive network, weight limitations, power requirements, and size
restrictions.

The realizability of the feedback operator is the primary limitation
of this method of design. Since the exact realization of the feedback
operator requires infinite bandwidth, only an approximation of the
feedback operator can be implemented. This limitation is partially
reduced by the fact that automatic control systems are generally low
pass systems. Thus the input may be restricted so that the input
frequencies are bounded. Then the feedback operator can be approximated

over this band of frequencies by the insertion of poles which lie



sufficiently to the left of the imaginary axis. 1In this process, great
care must be taken to insure that high frequency instabilities are not

introduced.

5.2 Problems for Future Study

The most severe restriction or assumption made in this development
is the condition that the varied plant is output equivalent to the
nominal plant. A sufficient condition for output equivalence is the

existence of an inverse operator for the varied plant. However, the

existence of an inverse operator is not a necessary condition for output

. . . . . . . th
equivalence. Consider a single input, time invariant, m  order
differential plant whose outputs are the states. Expression of the
nominal plant and the varied plant in canonical form yields
' T

A' = A+ bg" for some g (5.1)
Thus, the varied plant is output equivalent to the nominal plant and
u' is given by

u' =u - g'x (5.2)
where x(0) = 0, g = Ax + bu for each u. The formulation of necessary

and sufficient conditions for one system to be output equivalent to

another system merits some attention.
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